
 Travis Payton

GOOGLE SPEECH API
INFORMATION AND GUIDELINES

ABSTRACT
Google’s Speech recognition system is powerful,

but still not readily available for public use. This

paper covers how to use the Google Speech API,

from acquiring API Keys to the parameters in

the requests that are understood so far. Google

has made it clear that this API is not for public

use, and anybody wishing to use it should seek

express consent from Google. Seeing how the

web is an open standard, this paper only

explores how the API works and in no way

condones the misuse of the service.

INTRODUCTION
This paper aims to cover everything a person

needs to know in order to access the Speech

API using any tool or language they choose.

Currently the API is used primarily by Google

Chrome’s Speech Input Javascript API, which is

defined in the W3C Web Speech API

Specification 1.

For the purposes of this paper we will only be

exploring how Chrome interacts with the

speech recognition API, and not on how to use

their Javascript extension.

The parts of this paper are as follows:

1. Acquiring an API Key

2. Speech API v1

3. Speech API Full-Duplex

4. Common Parameters

1 https://dvcs.w3.org/hg/speech-api/raw-
file/tip/speechapi.html, Glen Shires & Hans
Wennborg, Google Inc., 19 October 2012, W3C.

1. ACQUIRING AN API KEY

1.1 DEVELOPER API KEY
In order to gain access to an API key for Google

Speech, you will need to be a member of the

Chromium Development Group2, once you are a

member of the group, a new service will appear

on your list of API’s in the

The API Key that you get from being a member

of the Chromium Dev group only allows you

access to 50 calls a day. Fairly limiting,

especially since you will probably make that

many in just trying to figure out the API.

1.2 CHROME API KEY
Another option is to use the API Key built in to

Chrome. You can do this by capturing the

headers that Chrome sends when using the

speech input in Chrome. Since Chrome talks to

the Speech API via TLS/SSL using a packet

capture tool like Wireshark or tcpdump will not

be effective. Instead you can use Chrome’s

2 Chromium Development Group:
https://groups.google.com/a/chromium.org/for
um/#!forum/chromium-dev

https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev

 Travis Payton

built-in header capture debug tool capture the

full headers in plain text. This is built into

chrome by typing “about:net-internals” into the

omnibar. You can then export the captured

events to a json file and view it with your

favorite text editor.

Once you capture yourself using the Speech

input of chrome, you can then go through the

exported file and find the headers of Chrome

calling their server.

Here you can see the full header:

host":"www.google.com",":
method":"POST",":path":"/s
peech-api/full-
duplex/v1/up?key=AIzaSyBO
ti4mM-
6x9WDnZIjIeyEU21OpBXqW
Bgw&pair=3B57192471F0F1
83&output=pb&lang=en-
US&pFilter=2&maxAlternati
ves=1&client=chromium&co
ntinuous&interim

We can not only see the key that Chrome is

using, but also the full path and parameters that

they are using. For more about the full-duplex

API, please see section 3.

The key Chrome uses is more than likely hard

coded into the browser. Every browser tested

so far has had the same key supporting that

idea. The nice thing about this is that there

should be no limits on the number of API

requests that can be made with this Key as

everyone in the world who uses chrome is using

the same key.

3 http://mikepultz.com/2011/03/accessing-google-
speech-api-chrome-11/, Accessing Google Speech
API / Chrome 11, Mike Pultz, March 2011.

2. SPEECH API VERSION 1
The first information that became publicly

available concerning Google’s speech

recognition referenced the one shot API

endpoint. https://www.google.com/speech-

api/v1/recognize.

This endpoint only allows at most a 40 second

clip and limited file size. The exact

specifications are not known, but initial testing

proves that this endpoint is only good for a few

words at best. Mike Pultz has a great article on

how to use this API endpoint with curl in PHP3.

This endpoint is the easiest to use.

Basically this is a POST request to the URL

above, with the audio binary in the body of the

post. A Content-Type header must be specified

in the following format:

Content-Type: audio/x-flac; rate=16000

Where rate is the sampling rate of the file. If

this is incorrect then Google will have a hard-

time recognizing the audio.

The API takes 2 known formats: FLAC and

Speex. However the Speex implementation

does not seem to be the standard format and

so the recommended format is FLAC.

When you call this API you will pass the

parameters regarding your request in the URL.

For example:

...api/v1/recognize?xjerr=1&client=chrom

ium&lang=en-US

Tells the server that the file is in English-US, and

that the error tolerance should be set to 1, and

that the requesting client is chromium. For

http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11/
http://mikepultz.com/2011/03/accessing-google-speech-api-chrome-11/
https://www.google.com/speech-api/v1/recognize
https://www.google.com/speech-api/v1/recognize

 Travis Payton

more information about known parameters see

section 4.

A successful call to this API endpoint will return

the results in JSON, with an array of possible

responses and their Neural Network’s

confidence that that is correct.

{
 "status": 0,
 "id":
"b3447b5d98c5653e0067f35b32c0a8ca-1",
 "hypotheses": [
 {
 "utterance": "i like pickles",
 "confidence": 0.9012539
 },
 {
 "utterance": "i like pickle"
 }]
}

3 FULL-DUPLEX API
The non-duplex version of the API is limited to

short and small files. So even though it is easy

to use and doesn’t require an API key to access,

the functionality is rather limited. The other API

available is the full-duplex API which is what the

Speech Input in Chrome uses.

The important thing to remember with this API

endpoint is that it is full-duplex, meaning that

you have to have both on an upstream

connected uploading the audio, and a

downstream connected downloading the

transcription. If the upstream disconnects, so

does the downstream

Again, Mike Pultz has a great blog article on

how to use this with PHP and cURL4. In his

original post about the API, he mentions briefly

that he was able to reverse engineer it from the

Chromium Source code5. An excellent resource

4 http://mikepultz.com/2013/07/google-speech-api-
full-duplex-php-version/, Mike Pultz, Google Speech
API – Full Duplex PHP Version, June 2013

that is very valuable in understanding how it

works. The

google_streaming_remote_engine.cc file is the

guts of how Chromium interacts with the full

duplex API. (For more reference on the non-

duplex API see the

google_one_shot_remote_engine.cc file).

Instead of just sending one POST request with

the file and getting a transcription back in

response, you have to send a POST with the file

and a GET request simultaneously. See the

ConnectBothStreams function.

We will first start with the POST.

3.1 POST
The URL for the POST request is

https://www.google.com/speech-api/full-

duplex/v1/up

You need to pass the following parameters:

key = API KEY

pair = a random string used to connect the

down stream to this string.

output = the type of response you want, if none

is specified, JSON is used.

This stream must be connected first. A GET

request to “down” without a matching POST to

“up” will fail. Also, if the upstream terminates

before the full transcription is finished

downloading, then the down stream will be

terminated prematurely. So if you are using a

tool like cURL you can limit your upload speed

so that it doesn’t finish too soon.

3.2 GET
The URL for the GET request is:

5http://src.chromium.org/viewvc/chrome/trunk/src/
content/browser/speech/, Chromium Source Code
for the Speech API.

http://mikepultz.com/2013/07/google-speech-api-full-duplex-php-version/
http://mikepultz.com/2013/07/google-speech-api-full-duplex-php-version/
https://www.google.com/speech-api/full-duplex/v1/up
https://www.google.com/speech-api/full-duplex/v1/up
http://src.chromium.org/viewvc/chrome/trunk/src/content/browser/speech/
http://src.chromium.org/viewvc/chrome/trunk/src/content/browser/speech/

 Travis Payton

https://www.google.com/speech-api/full-

duplex/v1/down

The only parameters you need are the key and

pair. The rest of the parameters are included in

the POST request to “up?”.

You will receive a stream back of the latest

transcription results as your up stream is

uploading. Once Google is finished processing

the upstream, it will pass a final to the

downstream. So it is best to keep listening for

final on the down stream and only disconnect

the upstream once you’ve received it.

Next we will talk about some of the extra

parameters that you can send in these requests:

4 PARAMETERS
Some common Parameters which you can pass

to the Full-duplex API

Key = the API key for the service.

pFilter = profanity filter, 0 = Off, 1= medium?

2=Strict

lang = The language of the recording /

transcription. Use the standard webcodes for

your language. I.e. en-US for English-US, ru for

Russian, etc.

output = The output of the stream. Some

values include “pb” for binary, “json” for json

string.

Pair = required for using the full-duplex stream.

A random alphanumeric string at least 16

characters long used in both up and down

streams.

maxAlternatives = How many possible

transcriptions do you want? 1 – X.

continuous = Used in full-duplex to keep the

stream open and transcoding as long as there is

no silence.

Interim = tells chrome to send back results

before its finished, so you get a live stream of

possible transcriptions as it processes the audio.

For the one_shot api there are a few other

options

lm = Grammars to use – not sure how to use

this, believe its used to specify the type of

audio, ie transcription, message, etc.

xhw = hardware information – again, not sure

how to use it.

CONCLUSION
The Google API is a great resource, and

hopefully once Google releases it publicly, the

documentation will be more complete and the

service easier to implement. For an easy

transcription service, check out Nuance’s API.

https://www.google.com/speech-api/full-duplex/v1/down
https://www.google.com/speech-api/full-duplex/v1/down

